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Abstract. The access to face to face classes at the Autonomous University of the 

State of Quintana Roo requires the use of a face mask detector as a personal 

protection measure against any risk of COVID-19 infection or other respiratory 

diseases in enclosed spaces. As a proposed facemask detector, the present work 

consists of the implementation of an embedded instrument that performs the 

detection of face masks inside an enclosed space such as the networking 

laboratory so that students and teachers have a safer space against possible 

health risks. Therefore, the implementation of an object detection method was 

sought to identify whether any student or any staff member is wearing his or 

her face mask to have access to the laboratory facilities. Therefore, in this 

research work, we implement an embedded face mask detector system based on 

Convolutional Neural Networks (CCN) used over a Raspberry Pi 4 computer. 

Keywords: Convolutional neural networks (CNN), embedded systems, face 

mask detector (FMD), real time face mask detector (RTFMD), raspberry Pi 4. 

1 Introduction 

In the Autonomous University of the State of Quintana Roo (UQRoo) at Cancun, the 

use face masks were a then mandatory requirement to protect the staff and the student 

community from COVID-19, and to keep a reasonable distance about 1.5 metres each 

one including the access to the campus facilities through sanitary filters [1]. 

In most of most public Mexican universities, there is no a usual monitoring of the 

entrance facilities using a face mask detection system. In the Networking Laboratory, 

there is an opportunity of deploying an embedded-system prototype to detect fase 

masks on faces through a comparison of two face detection models based on 

Convolutional Neural Networks (CNN) which are analyzed in terms of metrics to 

choose the metric with the best performance. Once, the best choice CNN-based model 

is implemented on a Raspberry Pi 4 computer. 
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Conceptually, Artificial Intelligence (AI) consists of systemised methods that 

mimic the human intelligence to perform tasks and to interactively improve upon the 

gathered information. AI consists of a variety of fields from bionic robotics, as well as 

video games, its logic and data processing speed mainly achieved through artificial 

neural networks [2]. 

On the other hand, Computational Intelligence (CI) comprises the extraction, 

learning, reasoning, and training methods to build new knowledge. Within CI, there 

are two subfields which are Deep Learning (DL) and Machine Learning (ML) that 

supports the statistical methods to allow machines to improve experiences [3]. 

On the other hand, ML automatically seeks to learn meaningful relationships and 

patterns from examples and observations. Advances in ML have enabled the 

emergence of intelligent systems with human like cognitive capabilities. The ability 

of such systems to solve problems is based on analytical models that generate 

predictions, rules, answers, recommendations or similar results [4]. The following six 

stages summaries the process for building a ML model: 

1. Collecting data: Data can be collected from sources such as a website, using 

either an Application Programming Interface (API) or a database. It´s important 

to notice that this stage is highly time consuming because data feed the chosen 

ML model. 

2. Data Preprocessing: Once data are available, data need to be processed to ensure 

the adequate format to feed the ML algorithm of interest. In practice, several pre-

processing tasks have to be performed before the proper use of data properly. 

3. Data Exploration: This stage performs a preliminary analysis to fix any missing 

values cases or to try to find, at first sight, any pattern on data to make easier the 

model construction. At this point, outliers should be detected; or find the most 

influential characteristics to make a prediction. 

4. Algorithm Training: Processed data feed ML algorithms with data previously 

processed. The aim is to extract the useful information from the initial data and 

then to make predictions properly. 

5. Algorithm Evaluation: The evaluation of an ML algorithm generates information 

which tests over the information generated by the knowledge of the previous 

training obtained through previous interactions. 

6. Algorithm Implementation: Then, the ML algorithm is finally implemented by a 

programe on either a Personal Computer (PC) or an embedded system. 

Summarizing these stages, we find a learning paradigm, based on supervised 

learning that means the algorithm is taught how to perform a job, having a classified 

dataset under a certain appreciation or idea to find patterns that can be applied in an 

analysis, and produce an output that is already known. In next section, we present 

some key required preliminaries about Convolutional Neural Networks(CNN) to 

deploy this proposed present work. 
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2 Face Detection Systems Preliminaries 

2.1. Face Detection Systems 

Face detection refers to the ability to identify the presence of human faces on digital 

images, using ML algorithms to determine whether one or more faces without 

regarding "whose face is whose" to only count the number of people on the analyzed 

image, then these analyzed images are stored into a searchable database. Moreover, 

face detection algorithms often start locating human eyes, which constitute what is 

known as a valley region and therefore one of the easiest features to be detected. Once 

the eyes are detected, the algorithm might attempt to detect facial regions, including 

eyebrows, mouth, nose, nostrils and iris. Once the algorithm assumes that has 

detected a facial region. Then the algorithm, can apply additional tests to validate 

whether it has detected a face [6]. 

2.1.1. Object Detection Architectures Based on CNN Face 

Detection Algorithms 

As CNNs are deep learning algorithms to analyze and learn visual features from large 

amounts of data [7]. Object detection allows computer systems to "see" their 

environments by detecting objects on images or visual videos. Through the use of 

supervised learning as seen from ML algorithms [8]. 

Supervised learning is when we train a ML algorithm by giving it questions 

(features) and answers (labels). The algorithm can make a prediction knowing the 

features. In this type of learning there are two training algorithms: classification and 

regression [8]. 

2.2. A Face Detection Model Using CNNs 

The structure of CNNs is inspired by neurons in the human and animal brain. CNNs 

consists of numerous convolutional layers preceding the subsampling (clustering) 

layers, while the final layers are Fully-Connected (FC) [5]. 

Object detection allows computer systems to "see" within their views by detecting 

objects on either images or visual videos. This is made through the use of supervised 

learning as seen from ML algorithms [8]. 

As usual, supervised learning is when a ML algorithm is trained by avoiding the 

questions (features) and answers (labels). Then, the algorithm can make a prediction 

by knowingthe keyimage features. In this type of learning, there are two algorithms 

(training): Classification and regression. In [8], classification techniques expect the 

algorithm to say to which group under study the element of interest belongs, Sandoval 

mentions that the regression algorithm is a method on which a number is expected. In 

context, this number does not have a place in a group, but returns a specific value. 

2.2.1. CNN Model Training 

The classification of a supervised learning CNN-based model is performed after 

training the model to classify the trained images into their respective classes by 
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learning important visual patterns. Typically, Tensorflow and Keras are the most 

commonly used Python-based libraries to be deployed on special computers such as 

embedded systems [10]. 

2.2.2. CNN Model for Face/Mask Detection 

When the CNN-based model is trained, the model can be implemented so that any 

image detects the presence of a face mask as the object of interest. The gathered 

image is initially sent to the face detection model to detect all faces within the 

environment image. Then, these faces are passed as inputs to the face mask detection 

model. Next, the model would extract hidden patterns/features of interest from the 

image and finally classify them as "face masks" or "No face masks" [10]. 

Based on these preliminaries, we present a brief description of the architecture 

MobileNet V2 and used metrics, deployed on this proposed embedded system 

towards its definite deployment. 

 

Fig. 1. MobileNet V2 architecture, reference [13-16]. 
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3 MobileNet V2 Architecture and Metrics 

3.1. MobileNetV1/V2 

To develop this embedded system, we choose MobilNets from Google, a CNN-based 

model whose core architecture is based on Depthwise Separable Convolutions 

including a width multiplier. For more details about MobilNets, see [12-16]. 

In addition, MobilNet V1/V2 are designed for mobile devices to support 

classification, detection. The ability to run deep networks enhances the user 

experience, in terms of accessibility anytime and anywhere as well as security, 

privacy, and energy consumption saving facilities [9]. 

While, MobileNetV2 is an enhancement of MobileNetV1 and serves as the state of 

the art for mobile visual recognition, including classification, object detection and 

semantic segmentation. MobileNetV2 is released as part of the Tensor Flow-Slim 

image classification library [9].  

Moreover, we select MobileNet V2 because this architecture deals with linear 

bottlenecks including inverted residuals, for more details about the MobileNet V2 

architecture are presented in [16-18]. In Figure 1, we present the diagram of the 

MobileNet V2 architecture. 

3.2. Metrics of Performance 

For performance of classification models, we only consider the following metrics 

such as precision is a non-negative prediction number that indicates how correct the 

system is, as seen in Equation (1), recall, or sensitivity, implies how many confident 

instances the model identifies in Equation (2), F1 score represents the mean of recall 

and precision, yielded in Equation (3) including the accuracy which highlights the 

usefulness and reliability of the used method as presented in Equation (4).  

They are presented from Equations (1) to (4) respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
, (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
, (2) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. (4) 

where FN, FP, and TP represent the False Negative, False Positive, and True Positive 

samples respectively, from an internal confusion matrix as originally 

presented  in [13-15]. 

For this embedded system, we make use of the of the Face Mask Detector (FMD) 

method and the Real Time Face Mask Detector (RTFMD) method besides a 

performance comparative of metrics in terms of the previously mentioned metrics. 
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4 Implementation and Technical Challenges 

4.1. The Raspberry Pi 4 Computer Platform 

For the implementation of this proposed embedded system, we require a platform to 

deploy the face detection models using the FDM metrics for CCNs. As the first 

technical challenge, we choose a portable computer which can load an mobile 

Operating System (OS) and we decide to use an open-source OS, a community 

developed one, such that the Raspbian OS, a light version based on Linux Debian OS, 

as the basis for the installation of the corresponding Python libraries to evaluate the 

FDM metrics. 

As second technical challenge, we selected the Raspberry Pi 4 computer because 

this type of computer provides the possibility to connect input/output hardware such 

as monitors including some outstanding built in features such as USB connectivity, 

 

Fig. 2. Diagram of the physical specifications of the Raspberry Pi 4 computer. 

 

Fig. 3. The Raspberry Pi 4 model B computer. 
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Gigabit Ethernet including Wireless LAN connectivity. In Figure 2, we yield the 

physical specifications of the Raspberry Pi 4 computer [11]. 

Based on its physical specifications, this computer was selected because of its 

credit card size, providing to our embedded system a compact size to provide an 

easier installation. According to the Raspberry site, the model used in this 

implementation is the Raspberry Pi 4 Model B. An illustration of the Model B is 

shown in Figure 3 below. 

Next, we present the full technical specifications of the Raspberry Pi 4 Model B 

computer below. Based in Table 1, the model B was selected because of its specific 

features, RAM capacity, processor, and SD card support which provides the storage to 

install the OS to be loaded in the system. 

4.2. CNN-Based Face Mask Detector Method 

The implementation of CNNs using the FMD-based method starts with the 

installation of the operating system that is obtained on the Raspberry Pi Imager, 

Table 1. Technical specifications of the Raspberry Pi 4 Model B computer, see [11]. 

Specification  

Processor: 
Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 

64-bit SoC @ 1.5GHz 

Memory: 
1GB, 2GB, 4GB or 8GB LPDDR4 (depending on model) 

with on-die ECC 

Connectivity: 

2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless LAN, 

Bluetooth 5.0, BLE 

Gigabit Ethernet 2 × USB 3.0 ports 

2 × USB 2.0 ports. 

GPIO: 
Standard 40-pin GPIO header 

(Fully backwards compatible with previous boards) 

Video & sound: 

2 × micro-HDMI ports (up to 4Kp60 supported) 

2-lane MIPI DSI display port 2-lane MIPI CSI camera port 

4-pole stereo audio and composite video port 

Multimedia: 

H.265 (4Kp60 decode); 

H.264 (1080p60 decode, 1080p30 en-code); 

OpenGL ES, 3.0 graphics 

SD card support: 
32 GB Micro SD card slot for loading operating system 

and data storage 

Input power: 

5V DC via USB-C connector (minimum 3A) 

5V DC via GPIO header (minimum 3A) Power over 

Ethernet (PoE)–enabled (Requires separate PoE HAT) 

Environment: Operating temperature 0–50ºC 

Compliance: 

For a full list of local and regional prod-uct approvals, 

please visit https://www.raspberrypi.org/documeta-

tion/hardware/raspberrypi/conform-ity.md 

Production lifetime: 
The Raspberry Pi 4 Model B will remain in production 

until at least January 2026 
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which can be downloadeddirectlyfromtheRaspberry web site. Afterdownloading, 

theuserexecutes the Raspberry Pi image installation file on the systems in order to 

install the OS. Then, the OS is ready to be implemented on the 32 GB microSD 

memory. Then, the Raspberry Pi OS (64-bit) Desktop (compatible with Raspberry Pi 

4) is installed. 

Once the operating system has been installed on the Raspberry Pi 4 microSD 

memory and the OS starts to be configured. Once the Graphic User Interface (GUI) 

started, the installation of the dependencies for the FDM method starts installing on 

the system. 

Installation of the FMD Software Dependencies 

Once the FDM is running, the user installs the main software dependencies to operate 

the FDM method from the terminal of the Raspberry Pi OS (Raspbian). Table 2 

presents the required key software dependencies to be installed and configured on our 

embedded system [18]. 

4.3. Installation and Activation of the Raspberry Pi 4 Camera 

To activate the Raspberry Pi camera, the user types the following command: sudo 

raspiconfig, on the terminal. Once the camera is activated, the installation process 

starts takes place. The next configuration windows appear as shown in Figure 4a), by 

selecting option 5 which shows of the interface options, where the peripherals can 

be configured. 

When the Interfacing Option menu is chosen, the user accesses to either activating 

or deactivating the menu choices. Next, Figure 4b) shows the first option to activate 

the Raspberry Pi camera connection.  

Once the Interfacing Option is selected. Subsequently 5c) shows the first option to 

activate the connection to the Raspberry Pi camera. Finally, Figure 5d) indicates the 

option to reboot the system to save the configuration data, to make effect 

configuration changes. 

Table 2. Installed software dependencies for the FMD methods [18]. 

Dependencies Name of the architecture or version 

System architecture Aarch64 

Python 3.9.2 

TensorFlow 2.11.0 

Keras 2.11.0 

Time-Python 0.0.15 

OpenCv-Python 3.1.0 

Numpy 1.23.5 

Picamera2 0.3.6 

Imutils 0.5.4 
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4.4. Implementation of the Raspberry Pi 

Figure 5a) yields the built-up camera for the Raspberry Pi 4 computer while Figure 

5b) shows the connection of the flexible cable from the camera to the Raspberry Pi 4 

Model B [18]. 

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 4. a) The Raspberry Pi software configuration tool interface. b) The Raspberry Pi 

Software Configuration Tool menu.c) The Raspberry Pi Software Configuration Tool menu, 

the user selects the "P1 Camera" option and then choosing the enable option. d) The system 

reboot window to activate the camera [18]. 

a) 

 

b) 

 

Fig. 5. a) The used Raspberry pi camera. b) The connection between the camera and the 

Raspberry Pi computer: The camera cable is plugged into the internal port [18]. 
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As physical  implementation, Figure 6a) shows the Raspberry Pi 4 deployment at 

the Networking Lab. In the same Figure 6a), the monitor shows the output image and 

a green box appear for wearing a face mask. 

In this deployment [18], the user opens the terminal over the directory of the CNN 

model "Face Mask Detector", made by the following command line; cd face-mask-

detector-main. Subsequently, the main Python script is executed to start the face mask 

detection system, with the following python interface command; python3 de-

tect_mask_video.py 

After a few seconds, the camera frame opens to detect whether or not the face 

mask is present. Figure 6b) presents a zoom-in of the monitor which shows the 

detection of face mask on face in real time by a green-colored box with the state 

description "Mask". 

Figure 6c) indicates the face detection without a face mask, showing a red-colored 

box with the description "No Mask". Figures 7b) and 7c) yield how the detection of 

the use of face masks on real time. 

a) 

 
b) 

 

c) 

 

Fig. 6. a) The peripheral connection deployment: monitor with a micro-HDMI cable, a 

keyboard,  a  mouse, and a  supply cable. b)  Face  detection  using a face mask. c) Face  

detection  without a face mask [18]. 
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5 Results and Discussion 

5.1. Results 

5.1.1. Method 1: Face Mask Detection (FMD) 

Based on the image dataset experiments in [5] which presents both conditions: with 

mask and without mask, as “with_mask” and “without_mask” respectively. We 

present the FMD model to obtain the previously mentioned performance metrics: 

recall, precision, and F1-score. Running the training model, showed in Figure 7, we 

yield the performance metrics of results [18]. 

Figure 7a) shows the classification of performance metrics for precision, recall, 

and F1-score by, sorted by columns, respectively while both with/without face mask 

conditions including the accuracy are yielded as rows up to 20 epochs with a running 

time of about 7 seconds. Figure 7b) presents the training/validation accuracy in terms 

of the number of epochs which tends to the unity from 2.5 epochs while the 

a) 

 

b) 

 
c) 

 

d) 

 

Fig. 7. Metrics of the Face Mask Detector FMD code. a) Performance metrics b) Graph of 

losses and accuracy for the FMD code. c) Face detection without face mask, FMD model. 

d) Face detection with face mask [18]. 
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training/validation loss has a decreasing behavior. Meanwhile, Figures 1c) and 1d) 

show the results of the FMD method without and with face masks as detection results: 

a red frame for the "No Mask" status and a green frame "Mask", respectively [18]. 

5.1.2. Method 2: Real Time Face Mask Detection (RTFDM) Training 

On the other hand, the Real Time Face Mask Detection RTFMD method project does 

not contain a dataset. However, the dataset was downloaded from [17], and attached 

to Naemazam's project (2022) [17]. Based on [19], we prepared a dataset having two 

folders named "with_mask" and "without_mask" image databases. By running the 

training model, as viewed in Figure 8, presents the measurement of metrics. 

In this point, we present the RTFMD method to obtain the previously mentioned 

performance metrics: recall, precision, and F1-score. Running the training model, 

showed in Figure 8, we yield the performance metrics of results [18]. 

Analogously with the previous subsection, Figure 8a) shows the classification of 

performance metrics for precision, recall, and F1-score by, sorted by columns, 

respectively while both with/without face mask conditions including the accuracy are 

yielded as rows up to 20 epochs with a running time of about 5 seconds. Figure 7b) 

a) 

 

b) 

 
c) 

 

d) 

 

Fig. 8. Metrics of the Face Mask Detector RTFMD code. a) Performance metrics b) Graph 

of losses and accuracy for the RTFMD code. c) Face detection without face mask, 

RTFMD model. d) Face detection with face mask [18]. 
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presents the training/validation accuracy in terms of the number of epochs which 

carries out behaviors less than the unity while the training/validation loss have a 

decreasing be-haviour. Meanwhile, Figures 1c) and 1d) show the results of the 

RTFMD method with-out and with face masks as detection results: a red frame for the 

"No Mask" status and a green frame "Mask", respectively [18]. 

5.2. A Comparison of Metrics of the Face Mask Detector (FMD) and the Real 

Time Face Mask (RTFMD) Detection methods 

5.2.1. Discussions 

For discussions of results, we make a performance comparison between the FMD and 

the RTFMD models to choose the model to be deployed on the Raspberry Pi 4 

computer. Table 3 yields this comparison in terms of precision, recall, and F1-score 

performance metrics for both with and without detection of face masks, tested on both 

academic staff and student members. 

In addition, Table 3shows the precision, recall, andF1-scoremetrics for both the 

FMD and the RTFMD methods which cover performance metrics in a range from 

90% to 100% [18]. 

Based on the results presented in Table 3, section four deals with the 

implementation of the FMD model on our home-made face detection embedded 

system using the Raspberry Pi 4 Model B. 

Based on performance results, the FDM method was chosen because it showed the 

best accuracy in detecting face masks closely to the 100% even though the RTFDM 

method showed an accuracy of about 98%. It is worth mentioning that, although this 

embedded instrument is under its experimental deployment [18]. 

6 Conclusions 

The implementation of an embedded face detection system using mouth covers based 

on a Raspberry Pi 4 platform allows for a reliable, programmable, expandable and 

upgradeable instrument that can implement face detection algorithms based on CNNs. 

Table 3. A comparison of metrics [18]. 

Name of the 

model 

With or 

without face 

masks 

Precision Recall F1-Score 

Model 1 FMD 

With face 

masks 
1 1 1 

With no face 

masks 
1 1 1 

Model 2 

RTFMD 
With face maks 1 .96 .98 

Accuracy = 0.98 
With no face 

masks 
.96 1 .98 
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Then, it is possible to evaluate different face detection modelsover the same 

instrument to help preventing of infectious diseases not only the covid-19 but also to 

help implementing protection and prevention measures within a crowded space. 

As based on Raspberry Pi 4, we can evaluate not only itsconfiguration and 

installation of input/output devices managed by a Linux-based OS and implemented 

in Python-based libraries to be able to perform and evaluate different face 

detection models. 

As a practical evaluation, this implementation of the face cover detection system 

over a Raspberry Pi 4 computer. However, there is not still a storage method to keep 

image databases because of the storage limitations of this small computer. Nowadays, 

there is an ethical concern of image uses but the purpose of this embedded system is 

only to detect face masks on faces. For deployment places, it is originally 

implemented in the networking laboratory but this embedded computer would be 

applied in other parts of campus. 

Viewing the RTFDM performance, the accuracy was less effective than the FDM 

model. However, this embedded system would use different detection models or 

better. For detection optics, this embedded system does not originally consider camera 

optics parameters such as lightning, viewing angles which would affect the 

performance in case of groups of students arriving to the laboratory. For design 

criteria, this embedded system is conceived to operate indoors instead of outdoor 

because we assumed lightning conditions as constant. To consider angle views, these 

views would depend on the camera location. 

Although the Raspberry Pi 4 architecture allows connectivity to the Internet, the 

focus of this work is the comparison of face detection metrics using FDM and 

RTFDM algorithms based on CNNs using MobileNet V2. The scope of this 

instrument design is based on a functional embedded system that can be implemented 

at a very reasonable cost for applications in enclosed, confined and crowded spaces. 

Finally, we should mention that this face detection system is not currently an IoT 

device at this moment, but thanks to the versatility of the Raspberry Pi 4 platform, we 

can add the IoT functionality in future to ensure a cloud storage of images through a 

local campus server. 
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